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Letter to the Editor 

Letter to the Editors regarding “10% body weight (gain) change as criterion for the maximum 
tolerated dose: A critical analysis” 

We find several reasons to disagree with the proposal by Van Berlo 
et al. (2022) who suggest that the predictive value of the rodent cancer 
bioassay might be improved by altering the way in which body weight is 
used in setting the highest dose in bioassays. 

The variables relating to body weight measured in toxicology studies 
include body weight, weight gain (relative to initial weight), and the 
efficiency of food utilization (EFU) expressed as body weight gain per 
100 g food consumed (Hoffman et al., 2002). Depending on the pro-
gression of toxicity, a 10% reduction in body weight gain may or may 
not be a reliable indicator that the maximum tolerated dose (MTD) is 
achieved. Such a reduction in terminal body weight might be achieved 
by a continuous marginal effect on body weight development or by 
losses and gains from a number of causes over a study of considerable 
length (Everds et al., 2013; Kemi et al., 2000; Cadoni et al., 2017; Weber, 
2017). Other observations (clinical signs, hematology, clinical chemis-
try, histopathology) must be factored into the decision to determine 
whether the MTD has been reached. 

High dosage increases the possibility of overdosing leading to satu-
ration of metabolic and reparative pathways with no relevance to 
human exposure levels. Effects seen at dose levels from which humans 
are conservatively protected by regulation (i.e.: those inducing toxicity 
or exceeding the capacity of the metabolic system to deal with them) do 
not add to the protection goal, but have a price in animal suffering in the 
study itself and often trigger further unnecessary investigations. Mor-
tality in control groups of rat standard cancer bioassays may reach 75% 
(Charles River, 2009; Weber et al., 2011); thus it is not surprising that 
regulatory bodies consider a study with high mortality at the top dose as 
unreliable and may ask for it to be repeated - a risk that increases sub-
stantially if doses higher than those that satisfy the criteria outlined 
above are used. Haseman from the National Toxicology Program has 
pointed out that, ‘ … (in) designing long-term rodent carcinogenicity 
studies, measures should be taken to minimize potential body weight 
differences between dosed and control groups … ’ (Haseman et al., 
1997). 

Hazard-based testing assumes that results obtained at high doses are 
indicative of results that will occur at lower, environmentally relevant, 
doses. This assumption, underlying the publication of van Berlo et al., 
fails to acknowledge the general acceptance of the questionable rele-
vance of findings in animal studies where homeostasis is disturbed by 
toxicity, and ignores the view, expressed in a number of publications, 
that the time has come to acknowledge that the standard 2-year rodent 
bioassay has limited predictive value in evaluating human risk (Cohen 
and Arnold 2011; Cohen 2017; Goodman 2018; Berry et al., 2019). 

The rodent cancer bioassay is generally reliable for identification of 
genotoxic carcinogens. For non-genotoxins, the same claim cannot be 
made (Ames and Swirsky Gold, 1990; Berry et al., 2019). The many 
differences between rodents and humans in metabolism, cell cycle times 
and division rates, as well as longevity, ensure that the predictive power 
of the bioassay will decrease with an increase in toxicity. The key issue, 
the uncertainty intrinsic to testing in rodents and extrapolating to 
humans (Olson et al., 2000; Tamaki et al., 2013; Ahuja et al., 2017) 
cannot be overcome by raising doses. Current short-term animal and in 
vitro assays have a scientific base that supports this assertion. 

We can confidently identify direct and indirect mutagens (clas-
togens, DNA damaging agents) without using animals. These agents are 
then treated as non-threshold carcinogens with as low as reasonably 
achievable exposure paradigms (ALARA), which is supported by societal 
consensus as a reasonable and precautionary regulatory approach. 

The central gateway of non-genotoxic carcinogenicity is cell prolif-
eration, with the consequence of increased probability of errors in DNA 
replication (Knudson, 1971; Moolgavkar and Knudson, 1981; Greenfield 
et al., 1984; Cohen and Ellwein, 1990; Wood et al., 2015; Tomasetti 
et al., 2017; Smith and Perfetti, 2018). Cell proliferation of many tissues 
can also be induced non-specifically by systemic toxicity to the whole 
organism and the higher the level of such toxicity, the greater the risk of 
enhanced tumour formation. Typically, tumours induced by 
non-genotoxic chemicals in rodent bioassays are found at greater than 
normal background levels exclusively at exaggerated dose levels. 
Importantly, cell proliferation mechanisms are threshold in type and the 
levels of the various thresholds are determined by different underlying 
stimuli. The stimuli will vary according to the nature of the mechanisms 
involved in damaging cells with consequent regeneration, or by changes 
induced as a result of activation of mitogenic cell signaling pathways 
(hormones, receptors). Preventing the trigger for cell proliferation will 
lower the chance of tumour induction to natural background levels. 

In the context of current efforts to reduce the amount of animal 
testing, attempts to improve the performance of the rodent cancer 
bioassay itself should be critically analysed. The low specificity of the 
life-time bioassay makes clear that it is important to be sure which 
public health problem we intend to solve by increasing animal use. 

Current initiatives are directed to reducing animal use in regulatory 
toxicology and in defining modes of action operative in organisms below 
toxic levels. This is not possible for conditions which alter homeostasis 
significantly over a period of time. The proposal (van Berlo et al., 2022) 
lags behind our current understanding of human oncogenicity. Testing 
needs to approach the maximum tolerated dose, but not induce 
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conditions that induce pathological conditions or overwhelm metabolic 
clearance systems. Disturbance of homeostasis in DNA repair and other 
cellular components is a fundamental problem in cancer risk assessment; 
the predictive value of information from animals in which growth and 
weight gain are deliberately disturbed is unlikely to be informative. We 
are of the view that studies approaching toxicity may be valid and they 
should not be rejected/repeated on strict mathematical criteria. 

The toxicological community increasingly recognizes that the 2-year 
bioassay is no longer needed and a number of efforts are underway to 
build confidence in alternative approaches that are more relevant and 
protective (Sistare et al., 2011; Craig et al., 2019). Hence efforts should 
be focused on achieving better human health protection with less animal 
use rather than attempt to improve the performance of the rodent cancer 
bioassay. Genotoxic carcinogens can be confidently identified in vitro. 
For non-genotoxic carcinogens in silico/in vitro non-animal methods as 
well as animal short-term assays are being developed for regulatory use 
(Strupp et al., 2012; Peffer et al., 2018; Smith et al., 2018; Jacobs et al., 
2020; Corton et al., 2022). Retirement of the rodent cancer bioassay is 
highly desirable in order to reach better human health protection by 
refined methods with less suffering and more sensible use of vertebrates. 
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